
1

Paper 224-2012

Parallel Computing in SAS®: Genetic Algorithms Application
Alejandro Correa Bahnsen

Darwin Amezquita

Andres Gonzalez

Banco Colpatria, Bogotá, Colombia

ABSTRACT

Genetic Algorithms is a very powerful optimization technique that can be used in a wide variety of problems. But
unfortunately the performance of this methodology relies heavily on computer power. We used Genetic
Algorithms to select the architecture of a Multi-Layer Perceptron Neural Network and even though results
indicated that it improves the predictive power of credit risk models, it is also very time consuming and
computationally expensive. Because of this, we implemented a version of Parallel Genetic Algorithms in SAS®
using PROC CONNECT procedure. Results show that parallel computing can drastically reduce the total
execution time of the genetic algorithm.

INTRODUCTION

In previous works Correa, Gonzalez and Ladino (2011) and Correa and Gonzalez (2011) proposed the use of
Genetic Algorithms (GA) in order to select the architecture of a Multi-Layer Perceptron Neural Network (MLP) in a
credit scoring context. The idea behind those works is to codify the architecture of an MLP in a set of bits, called
a chromosome, and then apply a GA and other algorithms to optimize that chromosome in order to maximize a
defined cost function, in this case the predictive power of the scorecard is measured using the ROC statistic.

The resulting GA-MLP framework has shown to have a better predictive power than a MLP using the SAS default
parameters and the traditional Logistic Regression. Unfortunately it takes too much time for the GA to converge.
This is because the algorithm must calculate at each iteration, a large number of different MLP Neural Networks.
In this paper, we propose to decrease the time of convergence of the GA using the PROC CONNECT features,
which allows to split one process into different sub-processes that can be calculated in parallel and therefore
make a better usage of the computational resources.

The GA can be parallelized by splitting in different sub-processes the cost calculation step for each chromosome.
That is because the calculation of each MLP Neural Network can be done separately. The Parallel Genetic
Algorithm (PGA) was run using a 16 processor Unix Server, which means that the GA can be split up to 16 sub
processes. In order to make a comparison between the times of convergence of the GA versus the number of
processors used, the algorithm was run using a different amount of processors.

This paper is divided into four sections. First, an introduction to general concepts of the GA, the theory behind the
PGA, and SAS PROC CONNECT is done; then, second section explain the methodology using to parallelize GA;
subsequently, we illustrate the experimental results of the algorithm and finally the conclusions are presented.

GENERAL CONCEPTS

 SAS PROC CONNECT

The CONNECT procedure is one of the ways that a local computer can connect to a server when both
have SAS installed. There are several advantages of having this type of structure, being the most
important the scalability of the system, the ability to allow many users to connect to it, and the no need
of any of the users to have a high performance computer, because all the processes are computed on
the server (Buchecker, 2010).

The standard way that the PROC CONNECT works is by sending instructions from the local computers
to the server using the rsubmit code.

 rsubmit server1;

 /* Instructions…. */

endrsubmit;

One issue with this code is that the local computer will stand by until the server ends its processes. The
way to avoid this waiting time is to modify the code by setting the option wait to no. Using this code we
are able to submit different codes that will be processed at the server simultaneously if there are
available resources to do so.

2

rsubmit server1 wait=no;

 /* Instructions…. */

endrsubmit;

rsubmit server2 wait=no;

 /* Instructions…. */

endrsubmit;

rsubmit server3 wait=no;

 /* Instructions…. */

endrsubmit;

Lastly, one finally code line should be added, that will tell the local computer to wait until all the
processes are finish.

waitfor server1 server2 server3;

 GENETIC ALGORITHM

As said in Haupt and Haupt (2004), a GA is an optimization technique that attempts to replicate natural
evolution processes in which the individuals with the considered best characteristics to adapt to the
environment are more likely to reproduce and survive. These advantageous individuals mate between
them, producing descendants similarly characterized, therefore favorable characteristics are preserved
and unfavorable ones destroyed, leading to the progressive evolution of species. GA is an optimization
algorithm that can be applied to a wide range of problems. The flow diagram presented in Fig 1.
describes the process. For further information please refer to Correa, Gonzalez and Ladino (2011).

Figure1. GA Flow Diagram

 PARALLEL GENETIC ALGORITHM

Parallel genetic algorithms are modifications made to the genetic algorithms in order to reduce the time
consumption, making them more efficient (Nowostawski and Poli, 1999). Because GA is a serial
algorithm it doesn’t used the full computational resources available in a multi core computer, the PGA
attempts to improve this weakness by paralyzing the GA process.

To parallelize a GA the process is sectioned, attempting to identify the steps where parallelization can
be inserted, and split a long serial step into shorter sub-process. The applicability and the profit of make
this kind of modifications to original genetic algorithms will depend of GA structure, limitations come
from the need of results of one steps in the next one.

3

METHODOLOGY

As shown by Nowostawski and Poli (1999), there are several ways of parallelize a GA, for this specific case a
Master-Slave parallelization with synchronous cost evaluation is used. This translates in creating t sub-groups at
the moment of the neural network estimation and cost calculation, and calculates all sub-groups at the same
time. This can be done because when calculating the cost function the only information the algorithm needs is
the chromosome, so the cost function of different chromosomes can be calculated at the same time. Fig 3.
Shows the PGA process.

This algorithm present a limitation in the parallelization, it must wait until all the subgroups cost functions are
calculated in order to move to the next step. As a consequence, the time of the algorithm is going to be the time
of the slowest sub-group cost function.

As shown in Fig 2. and Fig 3., the modification made to GA Flow diagram doesn’t affect the results of the
process; the profit must be quantified in time saving, and to be more accurate, that time saving must be
relativized with initial time spent by the GA.

Figure 2. GA Flow Diagram

 Figure 3. PGA Flor Diagram

RESULTS

In this section we present the experimental results. For the purpose of testing the parallel algorithm we use the
same data set used by Correa and Gonzalez (2011). This particular data set contains information of 125.557
clients of a financial institution and it was used to develop a credit risk scorecard using a MLP. Correa and
Gonzalez demostrated that using a GA to select the architecture of a MLP improves the predictive power of the
scorecard but calculating the GA takes significantly more time than using the MLP with the default parameters of
SAS® Enterprise Miner.

Using the capabilities of SAS® PROC CONNECT we calculate the PGA using 2, 4, 8 and 16 CPU’s. Results are
shown in Fig 4. Also, Table 1. show the predictive power of the MLP that each PGA selects. Is important to note
that all the PGA’s reach the same MLP architecture.

Using a simple regression the time saving when using n CPU’s can be express as:

4

Figure 4. Total Time vs. Number of CPU’s.

Number of
CPU’s

Time
Predictive

Power

1 9:26:11 71.25%

2 4:19:17 71.25%

4 2:29:32 71.25%

8 1:11:35 71.25%

16 0:35:24 71.25%

 Table 1. Total Time and Predictive Power

CONCLUSION

The experimental results have shown that using PGA to optimize the architecture of a MLP neural network, reach
the same results like the serial GA, but the time spend is reduced approximately by a factor of n, where n is the
number of CPU’s used. This is particularly helpful because the spent time is reduced from 9.4 to 0.6 hours, which
represents a reduction of around 94%.

The results of GA will depend of the parameters selection such as the mutation rate, the elite number, or the type
of mating; time saving due to parallelizing allows testing a broader number of parameters maximizing the
probability of arriving to the global optimum.

It is also important to note that there’s still room for testing different parallelized versions of the GA. In fact, the
one used in this paper, the Master-Slave with synchronous cost function evaluation, have the limitation that the
total time of one iteration is the time of the slowest sub-group, and that lead to an inefficiency.

Finally, although the PGA outperforms the GA, this could be improved by also parallelizing the MLP estimation.

REFERENCES

 Correa, A. Gonzalez, C. Ladino. Genetic Algorithm Optimization for Selecting the Best Architecture of a Multi-Layer Perceptron

Neural Network: A Credit Scoring Case. SAS Global Forum, 2011.

 Correa, A. Gonzalez. Evolutionary algorithms for selecting the architecture of a MLP Neural Network: A Credit Scoring Case. Fourth

Workshop on Data Mining Case Studies and Practice Prize, IEEE International Conference in Data Mining, 2011.

 Buchecker, M. Michelle. Parallel Processing Hands-On Workshop. SUGI29. 2010.

 Mariusz, Nowostawski. Ricardo, Poli. Parallel Genetic Algorithm Taxonomy, KES’99, May 1999.

 R. Haupt, S. Haupt. Practical Genetic Algorithms, second edition. John Wiley & Sons. New York. 2004.

5

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Alejandro Correa Bahnsen
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3208306606
E-mail: al.bahnsen@gmail.com

Name: Andres Gonzalez
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3103595239
E-mail: correaal@colpatria.com

Name: Darwin Amezquita
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3013372763
E-mail: amezqud@colpatria.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:correaal@colpatria.com
mailto:correaal@colpatria.com
mailto:correaal@colpatria.com

